Roll No.

E-3823

M. Sc./M. A. (Previous) EXAMINATION, 2021 MATHEMATICS

Paper Third

(Topology)

Time : Three Hours]

[Maximum Marks : 100

Note : All questions are compulsory. Attempt any *two* parts from each question. All questions carry equal marks.

Unit—I

- 1. (a) Define cardinality. Prove that $n + \alpha = \alpha$, $\forall n \in \mathbb{N}$, α being any infinite cardinal number.
 - (b) Define closure of a set. Let A, B be subsets of a topological space. Then prove that :
 - (i) A is closed in X if and only if $\overline{A} = A$
 - (ii) $\overline{\mathbf{A} \cup \mathbf{B}} = \overline{\mathbf{A}} \cup \overline{\mathbf{B}}$
 - (c) Define sub-base for a topological space with an example.

Let (X, T) be a topological space and S be a family of subsets of X. Then prove that S is a sub-base for T if and only if S generates T.

[2]

Unit—II

- 2. (a) Prove that every second countable space is first countable but the converse need not be true.
 - (b) Prove that every Tychonoff space is a T_3 -space.
 - (c) Define Hausdorff space. Prove that the property of being a T₂-space is a topological invariant property.

Unit—III

- 3. (a) Prove that a topological space is compact if and only if every family of closed subsets of it which has the finite intersection property has a non-empty intersection.
 - (b) Let C be a collection of connected subsets of a topological space (X, T) such that no two member of are mutually separated. Then prove that $\bigcup_{C \in C} C$ is also

connected.

(c) Prove that a metric space is compact if and only if it is complete and totally bounded.

Unit—IV

- (a) Prove that the product space X₁ × X₂ is compact if and only if each of the spaces X₁ and X₂ is compact.
 - (b) State and prove Tychonoff Embedding theorem.
 - (c) Let $X = \prod_{i \in I} X_i$ and $x \in X$. Then prove that X is first countable at x if and only if for each $i \in I$, X_i is first countable at $\pi_i(x)$ and for all except countably many *i*'s X_i is the only neighbourhood of $\pi_i(x)$ in X_i .

[3]

Unit—V

- 5. (a) Prove that every filter is contained in an ultra filter.
 - (b) If X is a path connected space, then prove that for any pair of points x_0 and x_1 in X, $\pi_1(X, x_0)$ and $\pi_1(X, x_1)$ are isomorphic.
 - (c) Define Net and its convergence. Prove that a topological space (X, T) is Hausdorff if and only if every net in X can converge to atmost one point.